Vector Stores
Vector databases are used to store and search for vectors. They can be used to store embeddings, search for similar vectors, and perform other vector operations.
This component creates a Chroma Vector Store with search capabilities.
For more information, see the Chroma documentation.
Name | Type | Description |
---|
collection_name | String | The name of the Chroma collection. Default: "langflow". |
persist_directory | String | The directory to persist the Chroma database. |
search_query | String | The query to search for in the vector store. |
ingest_data | Data | The data to ingest into the vector store (list of Data objects). |
embedding | Embeddings | The embedding function to use for the vector store. |
chroma_server_cors_allow_origins | String | CORS allow origins for the Chroma server. |
chroma_server_host | String | Host for the Chroma server. |
chroma_server_http_port | Integer | HTTP port for the Chroma server. |
chroma_server_grpc_port | Integer | gRPC port for the Chroma server. |
chroma_server_ssl_enabled | Boolean | Enable SSL for the Chroma server. |
allow_duplicates | Boolean | Allow duplicate documents in the vector store. |
search_type | String | Type of search to perform: "Similarity" or "MMR". |
number_of_results | Integer | Number of results to return from the search. Default: 10. |
limit | Integer | Limit the number of records to compare when Allow Duplicates is False. |
Name | Type | Description |
---|
vector_store | Chroma | Chroma vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates a FAISS Vector Store with search capabilities.
For more information, see the FAISS documentation.
Name | Type | Description |
---|
index_name | String | The name of the FAISS index. Default: "langflow_index". |
persist_directory | String | Path to save the FAISS index. It will be relative to where Langflow is running. |
search_query | String | The query to search for in the vector store. |
ingest_data | Data | The data to ingest into the vector store (list of Data objects or documents). |
allow_dangerous_deserialization | Boolean | Set to True to allow loading pickle files from untrusted sources. Default: True (advanced). |
embedding | Embeddings | The embedding function to use for the vector store. |
number_of_results | Integer | Number of results to return from the search. Default: 4 (advanced). |
Name | Type | Description |
---|
vector_store | FAISS | A FAISS vector store instance configured with the specified parameters. |
This component creates a Milvus Vector Store with search capabilities.
For more information, see the Milvus documentation.
Name | Type | Description |
---|
collection_name | String | Name of the Milvus collection |
collection_description | String | Description of the Milvus collection |
uri | String | Connection URI for Milvus |
password | SecretString | Password for Milvus |
username | SecretString | Username for Milvus |
batch_size | Integer | Number of data to process in a single batch |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
search_type | String | Type of search to perform |
search_score_threshold | Float | Minimum similarity score for search results |
search_filter | Dict | Metadata filters for search query |
setup_mode | String | Configuration mode for setting up the vector store |
vector_dimensions | Integer | Number of dimensions of the vectors |
pre_delete_collection | Boolean | Whether to delete the collection before creating a new one |
Name | Type | Description |
---|
vector_store | Milvus | A Milvus vector store instance configured with the specified parameters. |
This component creates a PGVector Vector Store with search capabilities.
For more information, see the PGVector documentation.
Name | Type | Description |
---|
pg_server_url | SecretString | PostgreSQL server connection string |
collection_name | String | Table name for the vector store |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
Name | Type | Description |
---|
vector_store | PGVector | PGVector vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates a Qdrant Vector Store with search capabilities.
For more information, see the Qdrant documentation.
Name | Type | Description |
---|
collection_name | String | Name of the Qdrant collection |
host | String | Qdrant server host |
port | Integer | Qdrant server port |
grpc_port | Integer | Qdrant gRPC port |
api_key | SecretString | API key for Qdrant |
prefix | String | Prefix for Qdrant |
timeout | Integer | Timeout for Qdrant operations |
path | String | Path for Qdrant |
url | String | URL for Qdrant |
distance_func | String | Distance function for vector similarity |
content_payload_key | String | Key for content payload |
metadata_payload_key | String | Key for metadata payload |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
Name | Type | Description |
---|
vector_store | Qdrant | Qdrant vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates a Redis Vector Store with search capabilities.
For more information, see the Redis documentation.
Name | Type | Description |
---|
redis_server_url | SecretString | Redis server connection string |
redis_index_name | String | Name of the Redis index |
code | String | Custom code for Redis (advanced) |
schema | String | Schema for Redis index |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
number_of_results | Integer | Number of results to return in search |
embedding | Embeddings | Embedding function to use |
Name | Type | Description |
---|
vector_store | Redis | Redis vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates a Supabase Vector Store with search capabilities.
For more information, see the Supabase documentation.
Name | Type | Description |
---|
supabase_url | String | URL of the Supabase instance |
supabase_service_key | SecretString | Service key for Supabase authentication |
table_name | String | Name of the table in Supabase |
query_name | String | Name of the query to use |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
Name | Type | Description |
---|
vector_store | SupabaseVectorStore | Supabase vector store instance |
search_results | List[Data] | Results of similarity search |
This component facilitates a Weaviate Vector Store setup, optimizing text and document indexing and retrieval.
For more information, see the Weaviate Documentation.
Name | Type | Description |
---|
weaviate_url | String | Default instance URL |
search_by_text | Boolean | Indicates whether to search by text |
api_key | SecretString | Optional API key for authentication |
index_name | String | Optional index name |
text_key | String | Default text extraction key |
input | Document | Document or record |
embedding | Embeddings | Model used |
attributes | List[String] | Optional additional attributes |
Name | Type | Description |
---|
vector_store | WeaviateVectorStore | Weaviate vector store instance |
Note: Ensure Weaviate instance is running and accessible. Verify API key, index name, text key, and attributes are set correctly.