Skip to main content

Vector Stores

Vector databases are used to store and search for vectors. They can be used to store embeddings, search for similar vectors, and perform other vector operations.

Chroma DB​

This component creates a Chroma Vector Store with search capabilities. For more information, see the Chroma documentation.

Parameters​

Inputs​

NameTypeDescription
collection_nameStringThe name of the Chroma collection. Default: "langflow".
persist_directoryStringThe directory to persist the Chroma database.
search_queryStringThe query to search for in the vector store.
ingest_dataDataThe data to ingest into the vector store (list of Data objects).
embeddingEmbeddingsThe embedding function to use for the vector store.
chroma_server_cors_allow_originsStringCORS allow origins for the Chroma server.
chroma_server_hostStringHost for the Chroma server.
chroma_server_http_portIntegerHTTP port for the Chroma server.
chroma_server_grpc_portIntegergRPC port for the Chroma server.
chroma_server_ssl_enabledBooleanEnable SSL for the Chroma server.
allow_duplicatesBooleanAllow duplicate documents in the vector store.
search_typeStringType of search to perform: "Similarity" or "MMR".
number_of_resultsIntegerNumber of results to return from the search. Default: 10.
limitIntegerLimit the number of records to compare when Allow Duplicates is False.

Outputs​

NameTypeDescription
vector_storeChromaChroma vector store instance
search_resultsList[Data]Results of similarity search

FAISS​

This component creates a FAISS Vector Store with search capabilities. For more information, see the FAISS documentation.

Parameters​

Intputs​

NameTypeDescription
index_nameStringThe name of the FAISS index. Default: "langflow_index".
persist_directoryStringPath to save the FAISS index. It will be relative to where Langflow is running.
search_queryStringThe query to search for in the vector store.
ingest_dataDataThe data to ingest into the vector store (list of Data objects or documents).
allow_dangerous_deserializationBooleanSet to True to allow loading pickle files from untrusted sources. Default: True (advanced).
embeddingEmbeddingsThe embedding function to use for the vector store.
number_of_resultsIntegerNumber of results to return from the search. Default: 4 (advanced).

Outputs​

NameTypeDescription
vector_storeFAISSA FAISS vector store instance configured with the specified parameters.

Milvus​

This component creates a Milvus Vector Store with search capabilities. For more information, see the Milvus documentation.

Parameters​

Intputs​

NameTypeDescription
collection_nameStringName of the Milvus collection
collection_descriptionStringDescription of the Milvus collection
uriStringConnection URI for Milvus
passwordSecretStringPassword for Milvus
usernameSecretStringUsername for Milvus
batch_sizeIntegerNumber of data to process in a single batch
search_queryStringQuery for similarity search
ingest_dataDataData to be ingested into the vector store
embeddingEmbeddingsEmbedding function to use
number_of_resultsIntegerNumber of results to return in search
search_typeStringType of search to perform
search_score_thresholdFloatMinimum similarity score for search results
search_filterDictMetadata filters for search query
setup_modeStringConfiguration mode for setting up the vector store
vector_dimensionsIntegerNumber of dimensions of the vectors
pre_delete_collectionBooleanWhether to delete the collection before creating a new one

Outputs​

NameTypeDescription
vector_storeMilvusA Milvus vector store instance configured with the specified parameters.

PGVector​

This component creates a PGVector Vector Store with search capabilities. For more information, see the PGVector documentation.

Parameters​

Intputs​
NameTypeDescription
pg_server_urlSecretStringPostgreSQL server connection string
collection_nameStringTable name for the vector store
search_queryStringQuery for similarity search
ingest_dataDataData to be ingested into the vector store
embeddingEmbeddingsEmbedding function to use
number_of_resultsIntegerNumber of results to return in search

Outputs​

NameTypeDescription
vector_storePGVectorPGVector vector store instance
search_resultsList[Data]Results of similarity search

Qdrant​

This component creates a Qdrant Vector Store with search capabilities. For more information, see the Qdrant documentation.

Parameters​

Inputs​

NameTypeDescription
collection_nameStringName of the Qdrant collection
hostStringQdrant server host
portIntegerQdrant server port
grpc_portIntegerQdrant gRPC port
api_keySecretStringAPI key for Qdrant
prefixStringPrefix for Qdrant
timeoutIntegerTimeout for Qdrant operations
pathStringPath for Qdrant
urlStringURL for Qdrant
distance_funcStringDistance function for vector similarity
content_payload_keyStringKey for content payload
metadata_payload_keyStringKey for metadata payload
search_queryStringQuery for similarity search
ingest_dataDataData to be ingested into the vector store
embeddingEmbeddingsEmbedding function to use
number_of_resultsIntegerNumber of results to return in search

Outputs​

NameTypeDescription
vector_storeQdrantQdrant vector store instance
search_resultsList[Data]Results of similarity search

Redis​

This component creates a Redis Vector Store with search capabilities. For more information, see the Redis documentation.

Parameters​

Inputs​

NameTypeDescription
redis_server_urlSecretStringRedis server connection string
redis_index_nameStringName of the Redis index
codeStringCustom code for Redis (advanced)
schemaStringSchema for Redis index
search_queryStringQuery for similarity search
ingest_dataDataData to be ingested into the vector store
number_of_resultsIntegerNumber of results to return in search
embeddingEmbeddingsEmbedding function to use

Outputs​

NameTypeDescription
vector_storeRedisRedis vector store instance
search_resultsList[Data]Results of similarity search

Supabase​

This component creates a Supabase Vector Store with search capabilities. For more information, see the Supabase documentation.

Parameters​

Inputs​

NameTypeDescription
supabase_urlStringURL of the Supabase instance
supabase_service_keySecretStringService key for Supabase authentication
table_nameStringName of the table in Supabase
query_nameStringName of the query to use
search_queryStringQuery for similarity search
ingest_dataDataData to be ingested into the vector store
embeddingEmbeddingsEmbedding function to use
number_of_resultsIntegerNumber of results to return in search

Outputs​

NameTypeDescription
vector_storeSupabaseVectorStoreSupabase vector store instance
search_resultsList[Data]Results of similarity search

Weaviate​

This component facilitates a Weaviate Vector Store setup, optimizing text and document indexing and retrieval. For more information, see the Weaviate Documentation.

Parameters​

Inputs​

NameTypeDescription
weaviate_urlStringDefault instance URL
search_by_textBooleanIndicates whether to search by text
api_keySecretStringOptional API key for authentication
index_nameStringOptional index name
text_keyStringDefault text extraction key
inputDocumentDocument or record
embeddingEmbeddingsModel used
attributesList[String]Optional additional attributes

Outputs​

NameTypeDescription
vector_storeWeaviateVectorStoreWeaviate vector store instance

Note: Ensure Weaviate instance is running and accessible. Verify API key, index name, text key, and attributes are set correctly.

Hallo, wie kann ich Ihnen helfen?