Skip to main content

Embedding Models

Embeddings models are used to convert text into numerical vectors. These vectors can be used for various tasks such as similarity search, clustering, and classification.

Azure OpenAI Embeddings​

This component generates embeddings using Azure OpenAI models.

Parameters​

Inputs​

NameTypeDescription
Azure EndpointStringYour Azure endpoint, including the resource. Example: https://example-resource.azure.openai.com/
Deployment NameStringThe name of the deployment
API VersionStringThe API version to use, options include various dates
API KeyStringThe API key to access the Azure OpenAI service

Outputs​

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using Azure OpenAI

NVIDIA​

This component generates embeddings using NVIDIA models.

Parameters​

Inputs​

NameTypeDescription
modelStringThe NVIDIA model to use for embeddings (e.g., nvidia/nv-embed-v1)
base_urlStringBase URL for the NVIDIA API (default: https://integrate.api.nvidia.com/v1)
nvidia_api_keySecretStringAPI key for authenticating with NVIDIA's service
temperatureFloatModel temperature for embedding generation (default: 0.1)

Outputs​

NameTypeDescription
embeddingsEmbeddingsNVIDIAEmbeddings instance for generating embeddings

Ollama Embeddings​

This component generates embeddings using Ollama models.

Parameters​

Inputs​

NameTypeDescription
Ollama ModelStringName of the Ollama model to use (default: llama2)
Ollama Base URLStringBase URL of the Ollama API (default: http://localhost:11434)
Model TemperatureFloatTemperature parameter for the model. Adjusts the randomness in the generated embeddings

Outputs​

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using Ollama

OpenAI Embeddings​

This component is used to load embedding models from OpenAI.

Parameters​

Inputs​

NameTypeDescription
OpenAI API KeyStringThe API key to use for accessing the OpenAI API
Default HeadersDictDefault headers for the HTTP requests
Default QueryNestedDictDefault query parameters for the HTTP requests
Allowed SpecialListSpecial tokens allowed for processing (default: [])
Disallowed SpecialListSpecial tokens disallowed for processing (default: ["all"])
Chunk SizeIntegerChunk size for processing (default: 1000)
ClientAnyHTTP client for making requests
DeploymentStringDeployment name for the model (default: text-embedding-3-small)
Embedding Context LengthIntegerLength of embedding context (default: 8191)
Max RetriesIntegerMaximum number of retries for failed requests (default: 6)
ModelStringName of the model to use (default: text-embedding-3-small)
Model KwargsNestedDictAdditional keyword arguments for the model
OpenAI API BaseStringBase URL of the OpenAI API
OpenAI API TypeStringType of the OpenAI API
OpenAI API VersionStringVersion of the OpenAI API
OpenAI OrganizationStringOrganization associated with the API key
OpenAI ProxyStringProxy server for the requests
Request TimeoutFloatTimeout for the HTTP requests
Show Progress BarBooleanWhether to show a progress bar for processing (default: False)
Skip EmptyBooleanWhether to skip empty inputs (default: False)
TikToken EnableBooleanWhether to enable TikToken (default: True)
TikToken Model NameStringName of the TikToken model

Outputs​

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using OpenAI

VertexAI Embeddings​

This component is a wrapper around Google Vertex AI Embeddings API.

Parameters​

Inputs​

NameTypeDescription
credentialsCredentialsThe default custom credentials to use
locationStringThe default location to use when making API calls (default: us-central1)
max_output_tokensIntegerToken limit determines the maximum amount of text output from one prompt (default: 128)
model_nameStringThe name of the Vertex AI large language model (default: text-bison)
projectStringThe default GCP project to use when making Vertex API calls
request_parallelismIntegerThe amount of parallelism allowed for requests issued to VertexAI models (default: 5)
temperatureFloatTunes the degree of randomness in text generations. Should be a non-negative value (default: 0)
top_kIntegerHow the model selects tokens for output, the next token is selected from the top k tokens (default: 40)
top_pFloatTokens are selected from the most probable to least until the sum of their probabilities exceeds the top p value (default: 0.95)
tuned_model_nameStringThe name of a tuned model. If provided, model_name is ignored
verboseBooleanThis parameter controls the level of detail in the output. When set to True, it prints internal states of the chain to help debug (default: False)

Outputs​

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using VertexAI

Embedding similarity​

This component computes selected forms of similarity between two embedding vectors.

Parameters​

Inputs​

NameTypeDescription
embedding_vectorsEmbedding VectorsA list containing exactly two data objects with embedding vectors to compare.
similarity_metricSimilarity MetricSelect the similarity metric to use. Options: "Cosine Similarity", "Euclidean Distance", "Manhattan Distance".

Outputs​

NameTypeDescription
similarity_dataSimilarity DataData object containing the computed similarity score and additional information.

Text Embedder​

This component generates embeddings for a given message using a specified embedding model.

Parameters​

Inputs​

NameTypeDescription
embedding_modelEmbedding ModelThe embedding model to use for generating embeddings.
messageMessageThe message for which to generate embeddings.

Outputs​

NameTypeDescription
embeddingsEmbedding DataData object containing the original text and its embedding vector.

Previous Vector Stores

Hallo, wie kann ich Ihnen helfen?